metal-organic compounds

Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

(2-Aminoethanethiolato-*N*,*S*)bis-(ethylenediamine-*N*,*N'*)cobalt(III) dinitrate

Takumi Konno,* Takashi Yoshimura and Masakazu Hirotsu

Department of Chemistry, Faculty of Engineering, Gunma University, Kiryu, Gunma 376-8515, Japan Correspondence e-mail: konno@chem.gunma-u.ac.jp

Received 28 November 2000 Accepted 9 February 2001

In the title compound, $[Co(C_2H_6NS)(C_2H_8N_2)_2](NO_3)_2$, the Co^{III} atom has a slightly distorted octahedral geometry, coordinated by one 2-aminoethanethiolate and two ethylenediamine ligands. The three five-membered chelate rings adopt a *gauche* conformation with the unfavoured (*lel*)₂(*ob*) form, which is ascribed to hydrogen bonds between the amine groups in the complex cation and the nitrate counter-anions $[N \cdots O 2.900 (3)-3.378 (3) \text{ Å}].$

Comment

It is recognized that mononuclear cobalt(III) complexes with 2-aminoethanethiolate (aet) can function as effective S-donating ligands toward a variety of metal ions to form S-bridged polynuclear complexes (Heeg *et al.*, 1980; Konno *et al.*, 1998, 1999). Our recent studies have shown that the structures of these polynuclear complexes can be made to vary by changes in the counter-anions (Tokuda *et al.*, 2000; Konno *et al.*, 2000). In order to elucidate this role of the counter-anions in the control of S-bridged polynuclear structures, it is desirable to investigate the crystal structures of mononuclear aet complexes by changing the counter-anions. Thus, we prepared single crystals of the title complex, [Co(aet)-(en)_2](NO_3)_2, (I), and its structure is herein compared with the known structure of [Co(aet)(en)_2](SCN)_2 (Elder *et al.*, 1973).

The X-ray structural analysis of (I) confirmed the presence of a divalent complex cation, $[Co(aet)(en)_2]^{2+}$, and two nitrate anions. The space group $P2_1/n$ indicates that the crystal

contains a racemic pair (Δ and Λ) of the chiral complex cation. In the cation of (I), the Co atom exhibits a slightly distorted octahedral geometry, coordinated by one S and five N atoms from one aet and two en ligands [*trans* N–Co–N 174.9 (1) and 176.9 (1)°, and *trans* N–Co–S 175.78 (7)°; Fig. 1]. The Co–N_{trans}(S) bond distance [Co–N5 2.022 (2) Å] is *ca* 0.05 Å longer than the four Co–N_{cis}(S) distances [1.958 (2)–1.976 (2) Å, average 1.967 (2) Å], which is associated with the *trans* influence of the thiolate S-donor atom (Elder *et al.*, 1973; Dickman *et al.*, 1980). A similar difference of 0.04 Å was observed for the *trans* influence in [Co(aet)-(en)₂](SCN)₂ (Elder *et al.*, 1973). However, the Co–S [2.2494 (8) Å] and Co–N_{trans}(S) distances in (I) are longer than those in [Co(aet)(en)₂](SCN)₂ [Co–S 2.226 (2) Å, Co– N_{trans}(S) 2.001 (5) Å and average Co–N_{cis}(S) 1.960 (9) Å].

The aet and en chelate rings in (I) have a gauche confor-

The *ORTEP*II (Johnson, 1976) drawing of the cation of (I). Displacement ellipsoids are plotted at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.

mation with the *lel*, *lel* and *ob* forms: λ , λ and δ for the Δ isomer, and δ , δ and λ for the Λ isomer. This is distinct from the (*lel*)₃ form found in [Co(aet)(en)₂](SCN)₂ (Elder *et al.*, 1973). It has been postulated that the (*lel*)₃ form is the most stable for the isolated complex cation, but hydrogen bonds could lead to the formation of other, less favoured, forms (Hawkins, 1971). Thus, the (*lel*)₂(*ob*) form found in the cation of (I) can be ascribed to the hydrogen-bonding interactions with the nitrate anions (see below), taking into account the fact that only weak hydrogen bonds exist in [Co(aet)-(en)₂](SCN)₂ (Elder *et al.*, 1973).

All the amine H atoms of the aet and en ligands, except H5, are involved in hydrogen bonds with nitrate O atoms in the crystal $[N \cdots O 2.900 (3)-3.378 (3) \text{ Å}]$. Additionally, atoms H3 and H8 are hydrogen bonded to two O acceptors to form three-centre bonds (Table 2). All the nitrate O atoms participate in the hydrogen bonds, thus completing a three-dimensional hydrogen-bond network.

The title complex was prepared by a method similar to that used for $[Co(aet)(en)_2](ClO_4)_2$ (Nosco & Deutsch, 1982). To a deaerated solution containing cobalt(II) nitrate hexahydrate (5.91 g, 20.3 mmol) in water (15 ml) was added a deaerated solution containing cystamine dihydrochloride (2.28 g, 10 mmol) and ethylenediamine (3.75 ml, 56 mmol) in water (30 ml). The mixture was stirred at room temperature for 30 min under a nitrogen atmosphere, followed by the addition of a saturated aqueous solution of NaNO₃ (70 ml). After the reaction, the mixture was allowed to stand in a refrigerator for 1 d. The resulting black crystals of (I) were collected by filtration and recrystallized from water by adding several drops of a saturated aqueous solution of NaNO₃ (yield 5.28 g, 82.1%).

 $R_{\rm int} = 0.017$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = 0 \rightarrow 12$

 $k = 0 \rightarrow 16$

 $l = -16 \rightarrow 16$

3 standard reflections

every 150 reflections

intensity decay: -0.56%

Crystal data

$[Co(C_2H_6NS)(C_2H_8N_2)_2](NO_3)_2$	$D_x = 1.659 \text{ Mg m}^{-3}$
$M_r = 379.28$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/n$	Cell parameters from 25
a = 9.509 (1) Å	reflections
b = 12.824 (1) Å	$\theta = 14.5 - 15.0^{\circ}$
c = 12.635(1) Å	$\mu = 1.306 \text{ mm}^{-1}$
$\beta = 99.780 \ (8)^{\circ}$	T = 296 K
V = 1518.4 (3) Å ³	Polyhedron, black
Z = 4	$0.35 \times 0.25 \times 0.18 \text{ mm}$
Data collection	

Rigaku AFC-75 diffractometer $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{min} = 0.688, T_{max} = 0.770$ 3862 measured reflections 3650 independent reflections 2452 reflections with $I > 2\sigma(I)$

Refinement

Refinement on FH atoms treated by a mixture of
independent and constrained
refinementR = 0.031independent and constrained
refinementS = 1.110 $w = 1/[\sigma^2(F_o) + 0.00038|F_o|^2]$ 2726 reflections $(\Delta/\sigma)_{max} = 0.001$ 266 parameters $\Delta\rho_{max} = 0.30$ e Å⁻³
 $\Delta\rho_{min} = -0.29$ e Å⁻³

Table 1

Selected geometric parameters (Å, °).

2494 (8) 969 (3) 958 (2)	Co1-N3 Co1-N4	1.976 (2) 1.963 (2)
969 (3) 958 (2)	Co1-N4	1.963 (2)
958 (2)	G 4 315	
(_)	Col-N5	2.022 (2)
7.85 (8)	N1-Co1-N5	90.1 (1)
9.97 (8)	N2-Co1-N3	85.2 (1)
0.57 (8)	N2-Co1-N4	90.3 (1)
1.90 (7)	N2-Co1-N5	92.2 (1)
5.78 (7)	N3-Co1-N4	174.9 (1)
6.9 (1)	N3-Co1-N5	93.2 (1)
2.6 (1)	N4-Co1-N5	84.5 (1)
2.0 (1)		
52.7 (3)	N4-C5-C6-N5	-50.1 (3)
54.1 (3)		
	87.85 (8) 19.97 (8) 10.57 (8) 11.90 (7) 15.78 (7) 12.6 (1) 12.0 (1) 552.7 (3) 54.1 (3)	37.85(8) N1-Co1-N5 $39.97(8)$ N2-Co1-N3 $30.57(8)$ N2-Co1-N4 $90.97(8)$ N2-Co1-N4 $90.57(8)$ N2-Co1-N4 $90.97(8)$ N3-Co1-N4 $90.97(8)$ N3-Co1-N5 $57.78(7)$ N3-Co1-N5 $92.6(1)$ N4-Co1-N5 $92.0(1)$ N4-Co1-N5 $92.0(1)$ N4-C5-C6-N5 $54.1(3)$ N4-C5-C6-N5

Table 2

TT 1	1 1.				\sim
Ludrogon	bonding	acomotru		•	~ 1
I I VIII I VEII-	1 11 11 11 11 11 10	vennenv	. ~	•	
11, alogon	oonanig	geometry	۲	×.,	
	· · · ·	<u> </u>	· ·		

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
N1-H1···O23 ⁱⁱⁱ	0.84 (3)	2.21 (3)	3.000 (4)	156 (3)
N1-H2···O13	0.81 (3)	2.17 (3)	2.964 (3)	163 (3)
$N2-H3\cdots O11^{i}$	0.81(2)	2.15 (2)	2.900 (3)	154 (2)
$N2-H3\cdots O11^{ii}$	0.81(2)	2.65 (2)	3.130 (3)	119 (2)
$N2-H4\cdots O21^{ii}$	0.89 (3)	2.25 (3)	3.089 (3)	157 (3)
N3-H6···O21	0.94 (3)	2.22 (3)	3.142 (3)	165 (3)
N4-H7···O22 ⁱⁱⁱ	0.91 (3)	2.08 (3)	2.914 (4)	152 (2)
$N4-H8\cdots O11^{ii}$	0.87 (3)	2.42 (3)	3.088 (3)	134 (2)
$N4-H8\cdots O13^{ii}$	0.87 (3)	2.33 (3)	3.189 (3)	172 (3)
$N5-H9\cdots O12^{i}$	0.89 (3)	2.30 (3)	3.141 (3)	157 (2)
$N5-H10\cdots O13$	0.90 (3)	2.61 (3)	3.378 (3)	143 (2)

Symmetry codes: (i) $\frac{1}{2} - x$, $\frac{1}{2} + y$, $\frac{3}{2} - z$; (ii) $x - \frac{1}{2}$, $\frac{1}{2} - y$, $z - \frac{1}{2}$; (iii) $\frac{1}{2} + x$, $\frac{1}{2} - y$, $z - \frac{1}{2}$.

H atoms bonded to C atoms were placed at calculated positions and refined with isotropic displacement parameters $[U_{iso} = 1.2U_{eq} (C)]$ and a riding model. H atoms bonded to N atoms were refined freely.

Data collection: *MSC/AFC Diffractometer Control Software* (Molecular Structure Corporation, 1992); cell refinement: *MSC/AFC Diffractometer Control Software*; data reduction: *TEXSAN* (Molecular Structure Corporation, 1995); program(s) used to solve structure: *SIR*92 (Altomare *et al.*, 1994); program(s) used to refine structure: *TEXSAN*; software used to prepare material for publication: *TEXSAN*.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: JZ1442). Services for accessing these data are described at the back of the journal.

References

- Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.
- Dickman, M. H., Doedens, R. J. & Deutsch, E. (1980). Inorg. Chem. 19, 945-950.
- Elder, R. C., Florian, L. R., Lake, R. E. & Yacynych, A. M. (1973). *Inorg. Chem.* 12, 2690–2699.
- Hawkins, C. J. (1971). Absolute Configuration of Metal Complexes, edited by F. Cotton & G. Wilkinson, pp. 33–112. New York: Wiley.
- Heeg, M. S., Elder, R. C. & Deutsch, E. (1980). Inorg. Chem. 19, 554-556.
- Johnson, C. K. (1976). *ORTEPII*. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Konno, T., Matsuno, N., Okamoto, K. & Hirotsu, M. (1999). Chem. Lett. pp. 1243–1244.
- Konno, T., Tokuda, K., Okamoto, K. & Hirotsu, M. (2000). Chem. Lett. pp. 1258–1259.
- Konno, T., Tokuda, K., Suzuki, T. & Okamoto, K. (1998). Bull. Chem. Soc. Jpn, 71, 1049–1054.
- Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1995). *TEXSAN*. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Nosco, D. L. & Deutsch, E. (1982). Inorg. Synth. 21, 19-21.

Tokuda, K., Okamoto, K. & Konno, T. (2000). Inorg. Chem. 39, 333-339.